Bilangan Bulat dengan Eksponen Bilangan Bulat Positif
Masih ingat bentuk berikut :32 = 3 x 3
23 = 2 x 2 x 2
56 = 5 x 5 x 5 x 5 x 5 x 5
Demikian seterusnya sehingga diperoleh bentuk umum sebagai berikut.
Dengan a bilangan bulat dan n bilangan bulat positif Dari pengertian di atas akan diperoleh sifat-sifat berikut.
Sifat 1
an x an = am + n
24 x 23 = (2 x 2 x 2 x 2 )x(2 x 2 x 2 )
= 2 x 2 x 2 x 2 x 2 x 2 x 2
= 27
= 24+3
Sifat 2
am : an = am - n, m > n
55 : 53 = (5 x 5 x 5 x 5 x 5) : (5 x 5 x 5)
= 5 x 5
= 52
= 55 - 3
Sifat 3
(am)n = am x n
(34)2 = 34 x 34
= (3 x 3 x 3 x 3) x (3 x 3 x 3 x 3)
= (3 x 3 x 3 x 3 x 3 x 3 x 3 x 3)
= 38
= 34 x 2
Sifat 4
(a x b)m = am x bm
(4 x 2)3 = (4 x 2) x (4 x 2) x (4 x 2)
= (4 x 4 x 4) x (2 x 2 x 2)
= 43 x 23
Sifat 5
(a : b)m = am : bm
(6 : 3) 4 = (6 : 3) x (6 : 3) x (6 : 3) x (6 : 3)
= (6 x 6 x 6 x 6) : (3 x 3 x 3 x 3)
= 64 : 34
Bilangan Bulat dengan Eksponen Bilangan Bulat Negatif
Dari pola bilangan itu dapat disimpulkan bahwa 20 = 1 dan 2-n = 1/2n , secara umum dapat ditulis :
Pecahan Berpangkat Bilangan Bulat
Kita telah mengetahui bahwa pecahan adalah bilangan dalam bentuk dengun a dan b bilangan bulat (b ≠ 0). Bagaimanakah jika pecahan dipangkatkan dengan bilangan bulat? Untuk menentukan hasil pecahan yang dipangkatkan dengan bilangan bulat, caranya sama dengan menentukan hasil bilangan bulat yang dipangkatkan dengan bilangan bulat.
Contoh:
Tentukan hasil berikut ini!
(1/2)5
Jawab :
0 komentar:
Posting Komentar